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An ensemble of stochastic genetic relaxation oscillators via phase-attractive or repulsive cell-to-cell com-
munication are investigated. In the phase-attractive coupling case, it is found that cellular communication can
enhance self-induced stochastic resonance as well as collective rhythms, and that different intensities of noise
resulting from the fluctuation of intrinsic chemical reactions or the extrinsic environment can induce stochastic
limit cycles with different amplitudes for a large cell density. In contrast, in the phase-repulsive coupling case,
the distribution of phase differences among the stochastic oscillators can display such characteristic as unimo-
dality, bimodality or polymodality, depending on both noise intensity and cell number, but the modality of
phase difference distribution almost keeps invariant for an arbitrary noise intensity as the cell number is
beyond a threshold.

DOI: 10.1103/PhysRevE.78.031901 PACS number�s�: 87.16.Yc, 05.40.�a, 05.45.Xt

I. INTRODUCTION

Gene regulation processes in in vivo cells are performed
by complex networks which include interactions at the level
of transcriptional regulation as well as post-transcriptional
regulation by protein-protein interactions �1,2�. Periodic
changes in protein abundances are at the heart of important
cellular processes, which can play essential roles in keeping
time in organisms, encoding information for cell signaling,
coordinating diverse cellular processes, etc. �3,4�. Relevant
examples include self-sustained oscillations in circadian
clocks, enzyme syntheses, and cell cycles �5�. On the other
hand, synthetic gene regulatory networks have the potential
to enhance our understanding of important cellular processes
and receive increasing attention mainly due to their advan-
tages, e.g., they can be taken as substitutes to natural gene
networks for detailed study. Several oscillator architectures
have been developed and implemented in experiments �6–8�.
Of these synthetic genetic oscillators, an interesting yet typi-
cal example is genetic relaxation oscillator that can be con-
structed by embedding positive and negative feedback loops
into a gene network. Such a genetic oscillator displays relax-
ation oscillation, and is a prevalent molecular oscillator motif
in many circadian rhythms and cell cycles across many or-
ganisms �9,10�.

From dynamical viewpoints, self-sustained oscillating be-
haviors in nonlinear systems can be offered by limit cycles.
Even in the absence of limit cycle, however, internal rhythms
can also be generated in nonlinear systems due to the effect
of noise. Such a phenomenon is so-called noise-induced co-
herent motion which has become an active topic mostly
driven by its enormous relevance in numerous applications
in such fields as engineering, physics, biology, and medicine
�11–14�. In this paper we call such a noise-induced oscillator
as stochastic oscillator. Its basic dynamical characteristic is

that the corresponding deterministic system does not oscil-
late and is actually near but before a Hopf bifurcation point.
Owing to the constructive effect of noise, however, the origi-
nal potential limit cycle is excited. It has been verified that
noise-induced oscillations can be deterministic in suitable
limits �15–19�. Such stochastic genetic oscillators can exist
in many biological systems. For example, the noise-excited
competent state in Bacillus subtilis corresponds to the slow
relaxation of an excitable system �20–22�. In addition, some
genetic systems in a deterministic setting never flip from low
states to high states, but stochastic fluctuations can flip this
switch and allow the systems to oscillate �3,23,24�.

Given that cells are frequently subject to chemical signals
from their neighboring cells, it is worth studying the effect of
such chemical communication on the dynamics of popula-
tions of genetic oscillators, especially in the case of stochas-
tic genetic oscillators. It has been shown that an ensemble of
repressilators coupled to a quorum-sensing apparatus behave
like a macroscopic genetic clock �25�, displaying a robust
collective rhythm in a manner that the coupling reduces the
noisiness of the system. A more detailed work is that cell-to-
cell communication can synchronize genetic relaxation oscil-
lators, where the dominant mechanism of the synchroniza-
tion process is “fast threshold modulation” �26�. Even in the
fluctuated cellular environment, the joint effect of chemical
signals and noises not only can coordinate cellular behaviors
in a synchronous manner but also can lift the dynamics of
individual cells from a steady state to a stochastic limit cycle
�27�. We note that collective behaviors in these interacting
biological systems are achieved by the so-called phase-
attractive cell-to-cell communication module, or simply at-
tractive coupling. However, coupling can be devised in dif-
ferent ways in synthetic biological systems. Recently, a
phase-repulsive cellular communication module has been
proposed �28�. In contrast to attractive coupling, repulsive
coupling has different effects on cellular population behav-
iors, e.g., clustering and multistability �28�. Actually, repul-
sive �or inhibitory� coupling is very common in a biological*mcszhtsh@mail.sysu.edu.cn
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system. In Ref. �29�, it was shown that sparse long-range
repulsive coupling as well as local attractive coupling can
produce the stable uniform phase distributions in an array of
identical phase oscillators. With repulsive coupling, more-
over, identical phase oscillators coupled in a two-
dimensional array manner show the phase shift � �30�, etc.

A naturally arising question is how phase-attractive and
repulsive cell-to-cell communications affect coherence and
collective rhythms across an ensemble of stochastic genetic
oscillators. How does one describe collective behaviors? In
this paper, we take a stochastic relaxation-type genetic oscil-
lator capable of generating reliable rhythms in the presence
of fast molecular noise as the core module to address these
questions. We focus on the effects of noise, cell density, and
cellular communication on coherence and collective behav-
iors in a population of the stochastic genetic oscillators. We
show that information exchange between cells via the attrac-
tive coupling can enhance the coherence of individual cells
and induce robust collective behaviors. On the other hand, in
the case of repulsive coupling, the distribution function of
phase difference among stochastic oscillators can display
unimodality, bimodality or polymodality, depending on the
noise intensity and the cell number.

II. STOCHASTIC GENETIC OSCILLATOR
AND ITS BASIC DYNAMICS

Rhythm generation is a long-term topic in biological and
cognitive sciences �31,32�. Understanding the mechanism of
rhythm generation is a basic yet significant task. Except for
the fact that self-sustained oscillating behaviors in nonlinear
systems are mostly offered by limit cycles, internal rhythms
can be also generated in nonlinear systems even in the ab-
sence of a limit cycle, mainly due to the effect of noise. A
system with such a noise-induced coherent motion will be
called a stochastic oscillator.

In order to provide some insights into noise-induced
rhythms and after-displayed collective behaviors in popula-
tions of stochastic genetic oscillators, in this section we con-
sider a synthetic genetic relaxation oscillator motif proposed
by Hasty et al. �25,33�. In this motif, two genes produce
activator �x� and repressor �y�, respectively, under the control
of the same promoter, and the repressor antagonizes the ac-
tivator action, e.g., it acts as a protease by increasing the
activator degradation linearly. The synthetic network is
shown in Fig. 1�a�. The time evolution of concentrations of
the proteins can be determined by the following determinis-
tic equations:

dx

dt
= �1

1 + �xn

1 + xn − �1x − �xy , �1�

dy

dt
= �2

1 + �xn

1 + xn − �2y , �2�

where variables x and y represent activator and repressor,
respectively. Parameters �i �i=1,2� are the dimensionless
transcription rates in the absence of activator, �i �i=1,2� are
the degradation rates, � is the repressor strength, ��0 rep-

resents the increase of a protein production due to the bind-
ing of the activator to the promoter, and n is the Hill coeffi-
cient. From dynamical viewpoints, the above system
possesses rich dynamics, which results mainly from the
structure composed of fast positive feedback and slow nega-
tive feedback. Figure 1�b� shows a bifurcation diagram of the
system �1� and �2� with respect to the parameter �. Clearly,
the system has only a stable fixed point corresponding to
the quiescent state when ��3.81 or ��24.46, whereas
there exists a globally stable limit cycle when � falls into
�3.81 24.46�. Also, Fig. 1�c� displays a phase diagram in the
phase plane �x ,y� in an oscillation setting.

Based on the detailed-above dynamical result, we next
focus on noise-induced coherent motions, i.e., stochastic
rhythms in a noisy environment, where the deterministic sys-
tem cannot oscillate, e.g., for the parameter �=3, the system
is at a stable steady state �see Fig. 1�b��. Note that noise in
the form of random fluctuations arises in different ways in
genetic systems, e.g., internal noise results from the rela-
tively small number of reactant molecules, and external noise
originates in the random variation of one or more of the
externally set control parameters �34–36�. If the noise source
is small, its effect can be often incorporated post hoc into the
rate equations �37,38�. Here, for model �1� and �2� we intro-
duce a stochastic fluctuation to the parameter �, i.e., �→�
+	�t� in which �	�t��=0, �	�t�	�t���=D
�t− t�� with D repre-
senting the intensity of the noise 	�t�. In addition, we also
introduce an environmental fluctuation in the model, i.e., the
addition of 	�t� to the equation of the variable x �data not
shown�. In both cases, importantly, the stochastic oscillators
are generated through the so-called self-induced stochastic
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Promoter: P1, P2
Protein: x, y
Activation:
Repression:

FIG. 1. �Color online� A genetic relaxation system and its basic
dynamics. �a� The scheme of gene regulatory network; �b� the bi-
furcation diagram, where the solid lines represent the stable fixed
point �green� or limit cycle �black� in which the maximal-minimal
amplitudes of oscillation are plotted. Bifurcation points are �l

=3.81 �left-hand side�, �r=24.46 �right-hand side�; �c� nullclines
and limit cycle trajectories �green�, where black solid and dotted
lines represent x and y nullclines, respectively, and the red dot is the
unique unstable fixed point. Parameter values are �1=10, �2=1,
�1=0.5, �2=0.5, �=200, n=4. �=6 in �c�.
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resonance �SISR� mechanism since the noises perturb the
fast variable �x� �17–19�. All involved stochastic equations
throughout this paper are numerically solved using the Heun
algorithm with step size �=10−3 �39�.

To measure the temporal coherence of noise-induced os-
cillations, we introduced an index, denoted by S and defined
as �13�

S =
�Tk�t

�var�Tk�
�3�

Tk=�k+1−�k �here �k is the time until the presence of the kth
firing of the noise-induced oscillator� stands for the distribu-
tion of pulse duration, and �¯�t denotes average over time.
Such an index describes a ratio between the average of in-
terspike interval and its standard deviation, and is actually a
kind of signal-to-noise ratio in the sense of periodic signals
repetitive at a fixed interval. The bigger the index S, the
higher the coherence degree of output signals. In Fig. 2�a�,
we show the S as a function of the noise intensity D, where
there exists an optimal noise such that S has the maximum.
In addition, we also investigate the influence of noise on
mean firing period which is defined as M = �Tk�t. The results
are shown in Fig. 2�b�. Apparently, M decreases with the
increase of D. Therefore, the noise intensity can serve as a
controllable parameter for the mean firing period. Three typi-
cal numerical realizations of the noise-induced dynamics un-
der different noise intensities are demonstrated in Figs.
2�c�–2�e�, respectively. When the noise is rather small or
large, the system does not display regular coherent motion,

as shown in Figs. 2�c� and 2�e�, respectively. However, in
Fig. 2�d� the moderate noise intensity can induce pro-
nouncedly regular stochastic oscillation, which can almost
compare favorably with deterministic periodic motion shown
in Fig. 1�c�.

III. ATTRACTIVE COUPLING: COHERENCE,
SYNCHRONIZATION AND NOISE-INDUCED

STOCHASTIC LIMIT CYCLES WITH DIFFERENT
AMPLITUDES

Cells may exchange chemical signals via some small mol-
ecules in various forms and receive fluctuated stimuli simul-
taneously from their neighboring units. Among types of cel-
lular communication, the quorum sensing is one of prevalent
and programable mechanisms in cell populations. Here, we
adopt this mechanism to communicate in an ensemble of
stochastic genetic oscillators. The similar mechanisms have
been also adopted in Refs. �25–27,40,41�, but therein each
genetic oscillator is a self-sustained one. The scheme of the
stochastic genetic network coupled to a quorum-sensing
mechanism is shown in Fig. 3, and the corresponding dy-
namical equations are given by

dxi

dt
= �1

1 + �xi
n

1 + xi
n − �1xi − �� + 	i�t��xiyi + 


1 + �1Ai
2

1 + Ai
2 , �4�

dyi

dt
= �2

1 + �xi
n

1 + xi
n − �2yi, �5�

dli

dt
= �3

1 + �xi
n

1 + xi
n − �3li, �6�

dAi

dt
= �4li − �4Ai + �int�Q

N
	
j=1

N

Aj − Ai
 , �7�

where the meaning of variables xi and yi and some param-
eters is the same as that in Eqs. �1� and �2�. Variables li, and
Ai are the components of communication apparatus in the
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FIG. 2. Dynamics of the stochastic genetic oscillator. �a� The
signal-to-noise ratio S as a function of noise intensity D; �b� the
mean firing period M as a function of D; �c�, �d�, and �e� the time
evolution of the component x, where �c� corresponds to D=10−4.2,
�d� to D=10−3.0, and �e� to D=10−1.8.
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FIG. 3. Scheme of the stochastic genetic oscillator coupled to a
quorum-sensing mechanism apparatus via attractive phase. x and y
denote the proteins, and P1, P2, and P3 the promoters. The symbol
A refers to the signaling molecules. The hollow bidirectional arrow
denotes the diffusion of signaling molecules across the cellular
membrane.
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quorum-sensing mechanism. Parameters �3, �4, and 
 are
the dimensionless transcription rates, �3 and �4 are the deg-
radation rates, �1�0 represents the increase of the protein
production due to the binding of the signal molecule to the
promoter, �int is the diffusion rate of Ai across the cell mem-
brane, and 	i�t� is an independent Gaussian noise satisfying
�	i�t��=0. �	i�t�	 j�t���=D
ij
�t− t�� �i , j=1,2 , . . . ,N� with D
being the noise intensity. According to Ref. �25�, we know
the parameter Q=

�N/Vext

ke+�N/Vext
with �N /Vext=kdiff being the dif-

fusion rate. Therefore, Q depends on N in a nonlinear way
but we can take Q as a controller parameter to represent the
cell density. Throughout this section, we fix the parameters
as follows: �1=10, �2=1, �3=50, �4=0.4, �1=0.5, �2=0.5,
�3=25, �4=0.2, �=200, �1=10, �=3.8, 
=10, n=4, �int
=120.

To understand the dynamics of the multicelluar system
with the phase-attractive communication, we rewrite Eq. �7�
as

dAi

dt
= �4li − �4Ai − �int�1 − Q�Ai +

�intQ

N
	
j=1

N

�Aj − Ai� .

�8�

Note that the synchronized solution of the entire system
�4�–�7� does not consist of the solutions of the uncoupled
individual cell systems �1� and �2�, but those of Eqs. �4�–�7�
plus the following equation:

dAi

dt
= �4li − �4Ai − �int�1 − Q�Ai. �9�

For convenience, we call the system consisting of Eqs.
�4�–�6� and �9� as auxiliary system. To that end, we display a
bifurcation diagram of the auxiliary system, referring to Fig.
4�a�. Theoretical and simulation analysis shows that the aux-
iliary model belongs to type II classified for neuronal models
in Refs. �42–44�. Specifically, the system has a stable single
equilibrium point when it does not oscillate, and the equilib-
rium point loses stability and generates a subcritical Hopf
bifurcation as the parameter � changes. However, the bifur-
cation diagram near the bifurcation point is not easily and
clearly shown because the subcritical Hopf bifurcation point
is very close to the bifurcation point of the saddle-node type,
leading to two vertical lines. As seen from Fig. 4�a�, the cell
density Q can greatly influence the intrinsic dynamics by
decreasing the oscillation amplitude significantly. Figure 4�b�
displays the corresponding phase diagram of limit cycles in
the phase plane �x ,y� for two different cell densities, where
there is an obvious difference between the two limit cycles.
Besides, the asymmetry of coupling has some other effects
on the intrinsic dynamics, e.g., with the increase of value of
Q, the value of � evaluated at the left bifurcation point �ex-
citation threshold� shows some increase, as shown in Fig.
4�c�. In other words, the increase of Q can lift the excitation
threshold. For a fixed � near but after the corresponding
bifurcation point, the maximal activation of the component x
shows first a small change as Q varies, and then a rapid
decrease when Q approaches to 1, as clearly seen from Fig.
4�d�.

Next, we investigate the effects of multiplicative noise
and additive noise �assume that additive noise is added to the
equation of the fast variable x� on the auxiliary system. Fig-
ures 5�a� and 5�b� show S as a function of noise intensity D
and cell density Q in the cases of multiplicative and additive
noises, respectively. One can see from these two figures that
S has the maximum with respect to the noise intensity for a
fixed Q, which is attributed to the SISR mechanism. How-
ever, the phase portraits in the cases of these two types of
noises display obvious differences, as shown in Figs. 5�c�
and 5�d�. For weak noise intensities in both situations, the
stochastic limit cycles are essentially the precursors of the
deterministic limit cycle generated by Hopf bifurcation. With
the increase of the noise intensity, the difference of the phase
portraits gradually appears. In the case of multiplicative
noise, the maximal activation of the protein x with stochastic
oscillation shows small changes but the maximal activation
of the protein y is greatly influenced by the noise, displaying
the monotonic decrease with the increase of noise intensity,
referring to Fig. 5�c�. On the other hand, in the case of ad-
ditive noise, the maximal activation of the protein x shows
significant changes, sliding down remarkably with the in-
crease of noise intensity, but the maximal activation of the
protein y shows small changes. These numerical results fur-
ther indicate the pronounced characteristic of the SISR ef-
fect.

Based on the SISR idea of Lee DeVille, et al. �17,18� and
Freidlin �45�, here we give some explanations in order to
better understand the above jump mechanism. Note that the
dynamical equation describing the fast variable can be writ-
ten as

0

0

Q=1.0, =4.16

0 3.96Q= .0, =

FIG. 4. �Color online� �a� The bifurcation diagram for the aux-
iliary system, where the solid lines represent the stable fixed point
�green� or limit cycle, and the dashed line in between two solid
curves represents the unstable fixed point. In the case of limit cycle,
the maximal-minimal amplitudes of oscillation are plotted, where
Q=0.0 �thin black line�, Q=1.0 �thick red line� with � being in the
interval of oscillation, �0 represents a subcritical Hopf bifurcation
point; �b� two typical limit cycle trajectories, where the blue corre-
sponds to Q=0.0 and �=3.96 whereas the green corresponds to Q
=1.0 and �=4.16; �c� the dependence of the bifurcation point �0 on
Q; �d� the maximal activation of the component x vs Q, where the
� takes the values that are determined in �c�.
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dx

dt
= �1

1 + �xn

1 + xn − �1x − �xy + 

1 + �1A2

1 + A2 + ��x,y�	�t�

� f�x,y,A� + ��x,y�	�t� , �10�

where ��x ,y�=const. for additive noise and ��x ,y�=xy for
multiplicative noise. Furthermore, Eq. �10� can be rewritten
as

dx

dt
= −

�V�x,y,A�
dx

+ ��x,y�	�t� , �11�

where V�x ,y ,A�=� f�z,y,A�
�2�z,y� dz. The numerical calculation veri-

fies that V�x ,y ,A� is a double-well potential. Since y and A
are nearly constant in contrast to the fast variable x, they can
be regarded as two parameters in Eq. �10�. For fixed y and A,
there are points, x−�y ,A�, x+�y ,A�, and x0�y ,A�, satisfying
f�x ,y ,A�=0. We assume x−�y ,A��x0�y ,A��x+�y ,A�. Note
that the points x−�y ,A� and x+�y ,A� are always the local
minima of the potential whereas x0�y ,A� is the local maxi-
mum. Define

�V+ = V�x0�y,A�,y,A� − V�x+�y,A�,y,A� ,

�V− = V�x0�y,A�,y,A� − V�x−�y,A�,y,A� .

Let BL and BR be the left-hand branch and right-hand branch
of f�x ,y ,A�=0 in the phase plane �x ,y�, respectively. Due to
the multiplicative or additive noise, jumps between the at-
traction basins of x+ �right-hand well� and of x− �left-hand
well� by exceeding barriers will take place. In the case of
multiplicative noise, if the trajectory is in the right-hand
branch, then it subsequently slides along BR until the fluctua-
tion ��x ,y�	�t� hopes the barrier �V+ before it approaches to
zero. With the increase of noise intensity, the probability of
the fluctuation exceeding the barrier increases, leading to that
the trajectory more early jumps to the left-hand branch BL.
However, ��x ,y�	�t� is rather less noisy due to the compara-

tively small value of xy �especially in the case that the tra-
jectory approaches to the point of �V−=0� when the trajec-
tory is in the left-hand branch. Thereby, the hopping points
from the left to the right almost keep invariant. In this case,
the maximal activation protein x also almost keeps constant
but the maximal activation protein y is sensitive to noise. In
the case of additive noise, note that the additive noise does
not depend on the system variable. The trajectory slides
down the left-hand branch and the potential difference �V−
approaches to zero. With the increase of noise intensity, the
trajectory shows the increasing probability of jumping to the
right branch, leading to the decrease of the maximal activa-
tion protein x. In this case, since �V+ and �V− are not sym-
metrical, the system needs larger noise intensity to exceed
the barrier from the right branch to the left branch. With this
inherent property, the maximal activation protein y exhibits
smaller variation in contrast to the activation protein x.

A. Effect of both noise and cell density on coherence
and collective rhythm

Before showing how the coherence and cooperative dy-
namics of the interacting genetic oscillators depend on cell
density and noise intensity, we need a few characteristic in-
dices. To characterize the collective behaviors across a popu-
lation, we first introduce the instantaneous phase of the dy-
namics for each cell �32�

�i�t� = 2�
t − �k

i

�k+1
i − �k

i + 2�k, �k
i � t � �k+1

i , �12�

where �k
i is the time until the kth firing of the ith cell, which

is defined in simulations as the moment of crossing the
threshold of xi�t�=2.0. Then, we define an order parameter to
measure the phase synchronization of the coupled stochastic
genetic oscillators �46�,
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FIG. 5. �Color online� The signal-to-noise ra-
tio S as a function of noise intensity D and cell
density Q when the auxiliary system is subjected
to multiplicative noise �a�; additive noise �b�.
Typical stochastic oscillatory behaviors induced
by weak, moderate, and strong multiplicative
noises �c�; additive noises �d�, respectively. In the
cases of �c� and �d�, Q=0.8.
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R = � 1

N
	
k=1

N

ei�k� . �13�

In this way, R
0 in the unsynchronized regime whereas R

1 in the synchronized case. In addition, we compute the
coherence factor S of the population, based on the distribu-
tion of pulse intervals Tk

i for all N cells, i.e., S=Si, where Si

represents the signal-to-noise ratio of the ith cell as defined
by Eq. �3�, and the overbar stands for the ensemble average
over cells.

The effects of the noise intensity D and the cell density Q
on signal-to-noise S and order parameter R are summarized
in Fig. 6, where different colored regions in the parameter
space �D ,Q� are shown for an ensemble of N=100 cells.
Figures 6�a� and 6�c� show how S depends on D and Q,
where the bar on the right-hand side indicates the different
values of the signal-to-noise ratio with different colors in the
cases of multiplicative and additive noises, respectively. Fig-
ures 6�b� and 6�d� show how R depends on D and Q, where
the bar on the right-hand side indicates the different values of
the order parameter with different colors. In the case of mul-
tiplicative noise, for most of the fixed cell densities Q, S
increases first, then reaches a maximum, and then decreases
with the increase of the noise intensity D, displaying a typi-
cal self-induced stochastic resonance effect. Similarly, for
some of fixed noise intensities D, S first increases with the
increase of the cell density Q until it reaches an optimal
value. After that, it decreases gradually. On the other hand,
the synchronization index R also has similar tendency in the
parameter space �D ,Q�, as shown in Fig. 6�b�. In contrast, in
the case of additive noise, the S and R almost have the com-
pletely similar characteristics as described in the case of mul-
tiplicative noise, referring to Figs. 6�c� and 6�d�. In addition,
we point out that in the cases of these two kinds of noises,
the noise-induced stochastic oscillation of individual units in
a population can be explained essentially by the SISR

mechanism. Due to the similar characteristics of S and R in
both cases, below we focus on analyzing the dynamics in-
duced by the multiplicative noise in details.

From Figs. 6�a� and 6�b�, one can observe several dy-
namical regimes labeled by different colors. For clarity, we
examine two different lines in Figs. 6�a� and 6�b�: One hori-
zonal line where the cell density Q is fixed but the noise
intensity is variable, and one vertical line where the noise
intensity D is fixed but the cell density is changeable.

First, we examine a particular horizonal line with Q=0.7.
For a low noise intensity �D�10−5.2�, the motion of the cells
is essentially less coherent and independent because the sto-
chastic behaviors governed by noise in the individual cells
show a large variation. In this case, the cell-cell communica-
tion cannot bring out any collective behavior. Owing to such
a nearly independent motion, the phase differences among
cells have a uniform random distribution on �0,2��, result-
ing in R
0 �see the bar in Fig. 6�b��. A typical temporal
pattern of xi corresponding to this case is displayed in Fig.
7�a�, which shows that the temporal pattern of each cell is
rather irregular and independent of others because of a weak
noise. For a moderate noise intensity, the entire system be-
comes sensitive to noise because the pulse that events arise
from the fluctuation within one cell now become the source
of exciting the other cells. As a consequence, this global
excitation enhances the coherence and collective behaviors
of the cells, as indicated by the simultaneous increase of S
and R �referring the bars in Figs. 6�a� and 6�b��. A pro-
nounced SISR scenario and synchronization emerge, as
shown in Fig. 7�b�. In contrast to Figs. 2�a� and 5�a�, the
coherence in the ensemble of genetic oscillators via the cel-
lular communication is better than that in the single stochas-
tic oscillator for most of the parameter values. The gain of S
is a consequence of communication-enhanced coherence,
which is similar to the famous array-enhanced coherence
resonance �47–50�. However, with the further increase of
noise intensity, the coherence is ruined but the synchroniza-
tion holds on, referring to Fig. 7�c�.
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FIG. 6. �Color online� The dependence of
signal-to-noise ratio S and order parameter R on
noise intensity D and cell density Q: �a, c� S as a
function of D and Q in the cases of multiplicative
and additive noises, respectively; �b, d� R vs both
D and Q for multiplicative and additive noises,
respectively.
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Then, we examine a particular vertical line with the noise
intensity D=10−4.0. Three typical temporal patterns for low,
moderate, and high cell densities are shown in Figs.
8�a�–8�c�, respectively. For a low cell density, the motion of
the individual cells is essentially independent because a
noise-induced pulse within a cell is insufficient to excite the
ones of the other cells, as shown in Fig. 8�a�. With a moder-
ate cell density, the system displays better coherence and
even perfect synchronization, as shown in Fig. 8�b�, which is

similar to the pattern shown in Fig. 7�b�. This is, in this case,
because both D and Q fall into the parameter space �D ,Q�
with more coherence and better synchronization. More inter-
estingly, when the cell density approaches to saturation, the
coherence and synchronization suddenly disappear for arbi-
trary noise intensity, as shown in Fig. 8�c�. This is counter-
intuitive since coupling is conventionally believed to favor
collective behaviors.

B. Noise can serve as a controller for coherence
and collective rhythm

To show how noise plays a controller role for collective
rhythm and coherence across an ensemble of stochastic ge-
netic oscillators, we also examine horizonal and vertical lines
in Figs. 6�a� and 6�b�.

Figures 9�a� and 9�c� show the dependence of the signal-
to-noise ratio S and the order parameter S on the noise inten-
sity D, respectively, for several different cell densities Q. We
observe the following several characteristics: �1� Without
cellular communication �i.e., Q=0� and if the cell density is
very large �e.g., Q
1�, then the population of stochastic
oscillators cannot achieve synchronization �see Fig. 9�c�� and
the coherence of the entire system is very poor �refer to Fig.
9�a��. The results in the Q
1 case are also counterintuitive
since the coupling is conventionally thought of as favoring
collective behaviors. �2� For a fixed moderate cell density,
there exists an optimal noise intensity such that the coher-
ence index S has a maximum. �3� For a fixed moderate cell
density, there exists a wide region of the noise intensity in
which the synchronization index R is nearly equal to 1. In
other words, in this region, the synchronization in the sense
of statistics is achieved. �4� The synchronization region with
respect to the noise intensity is not enlarged with the increase
of the cell density.
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FIG. 7. Temporal firing patterns corresponding to Fig. 6. �a� Q
=0.7, D=10−5.3, �b� Q=0.7, D=10−4.5, �c� Q=0.7, D=10−2.0.
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Figures 9�b� and 9�d� show the dependence of the signal-
to-noise ratio S and the order parameter R on the cell density
Q, respectively, for several different noise intensities D

Interestingly, in the case of a low or high cell density, the
synchronization cannot be achieved even for arbitrary noise
intensity. In particular, for a weak noise intensity, there exists
a narrow region of cell density in which synchronization
emerges �see the blue curve in Fig. 9�d��. For a moderate
noise intensity, there is a wider region of the cell density
such that the synchronization index R nearly approaches to 1,
but the region is narrowed as the noise intensity increases.
On the other hand, for a weak or strong noise intensity, it
seems that S has comparatively small maximum �see the blue
and red curves in Fig. 9�b��. For a moderate noise intensity,
however, there exist a wider region of cell density such that
S has a larger value. In other words, the cell density remark-
ably affects the coherence only for a moderate noise inten-
sity. Such a role of the cell density seems different from that
in the case of coupled stochastic FitzHugh-Nagumo oscilla-
tors where the coupling can enhance the coherence �47,48�.

C. Noise-induced stochastic limit cycles
with different amplitudes

From the previous analysis, we have seen that the coop-
erativity between noise and cell density not only can induce
collective rhythms but also can enhance coherence. In this
section, we show another constructive role of multiplicative
or additive noise, i.e., different noise intensities can induce
different kinds of stochastic limit cycles for a high cell den-
sity. More precisely, in the case of multiplicative noise �simi-
larly in the case of additive noise, referring to Figs. 10�b� and
10�d��, there are several regions of the plane �D ,Q� in which
there exists noise-induced limit cycles with different ampli-
tudes of the component x �refer to Fig. 10�a��. For example,
for the cell density Q=0.8 �i.e., a horizonal line in Figs.
10�a� and 10�b��, the amplitude of the component x of indi-

vidual elements in the population shows a rapid transition
from low to high with the increase of noise intensity, refer-
ring to Figs. 10�a� and 10�b�. Figure 10�c� clearly shows that
two different noise intensities D=10−5.3 and D=10−4.5 induce
two different types of limit cycles: The one is with a large
amplitude and the other is with a small amplitude. Note that
in the case of low amplitude of the component x, the entire
system shows unsynchronized oscillation due to the rather
irregular oscillation of individual stochastic oscillators �see
Figs. 6�b� and 6�d��. The similar phenomena are also illus-
trated in Figs. 10�b� and 10�d�. Such phenomena seem to be
first found in a population of stochastic genetic oscillators
coupled to the quorum-sensing mechanism, and meanwhile
also would imply a biological fact that noise can autono-
mously adjust the intracellular process so as to adopt the
cellular environment stress. Similarly, by examining one ver-
tical line of Figs. 10�a� and 10�b�, we see that the high cell
density Q can serve as an effective parameter to damp the
amplitude of stochastic oscillators. This possibly implies an-
other biological fact that in the cellular environment with a
high cell density, a mass of cells competing for the limited
nutrition would lead to an abnormally low amplitude re-
sponse.

IV. REPULSIVE COUPLING: CHARACTERISTICS
OF PHASE DIFFERENCE DISTRIBUTION

First, to distinguish repulsive coupling from attractive
coupling, we make some explanations. Coupling is attractive
if any two of the coupled oscillators �including stochastic
oscillators� prefer in-phase configuration, and otherwise re-
pulsive. For example, attractive coupling can force coupled
stochastic oscillators to reach a stochastic synchronization
state as seen in the preceding sections. In contrast, repulsive
coupling tends to enlarge the phase difference between inter-
acting stochastic oscillators. Then, we point out that coupled
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FIG. 10. �Color online� Noise-induced sto-
chastic limit cycles with different amplitudes in
the cases of multiplicative noise �a,c� and addi-
tive noise �b,d�: �a,b� The dependence of the
mean amplitude of the component x on the pa-
rameters D and Q in the cases of multiplicative
and additive noises, respectively, where the right-
hand bar indicates the values of the mean ampli-
tude; �c,d� phase diagrams of two typically differ-
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oscillators with repulsive coupling can appear in many fields,
such as physics �51�, electronics �52�, and chemistry �53�.
Examples of repulsive coupling include multimode lasers
�54� and saline oscillators �55�. Repulsive coupling can be
also used to explain morphogenesis in hydra regeneration
and animal coat pattern formation �56,57�. However, there
are few works devoted to studying the dynamics of popula-
tions of stochastic genetic oscillators via phase-repulsive cel-
lular communication.

In contrast to Ref. �25�, here we propose a feasible syn-
thetic genetic network via the cell-to-cell communication
module that is designed to have a repressive and phase-
repulsive effect. The corresponding gene regulatory network
is shown in Fig. 11.

The mathematical equations corresponding to Fig. 11 are
the same as Eqs. �4�–�7� but �1=0 due to phase-repulsive
communication between cells. As is done previously, we first
introduce the instantaneous phase of dynamics for each cell
�refer to Eq. �12��. Then, we introduce a phase difference
between arbitrarily two stochastic oscillators,

��ij�t� = �i�t� − � j�t�, i, j = 1,2, . . . ,N . �14�

For the convenience and clarity of description, we instead
introduce a stochastic variable of phase difference in contrast
to Ref. �58�,

���t� � ���i,i0
�t�mod 2�,i � i0� , �15�

where i0 is an arbitrarily chosen index for which the corre-
sponding stochastic oscillator is taken as a reference. We
denote by p���� the corresponding distribution function or
probability density that can show the effect of repulsive cou-
pling. Then, p���� obeys a distribution over �0,2��. In such
a distribution displayed with a histogram, the preferred phase
differences are manifested by peaks and the sharpness of the
distribution characterizing the degree of the stochastic phase
locking or clustering. We are interested in the effect of noise
intensity on the characteristics of p����. We point out that
the synchronization index as defined in Eq. �13� for describ-
ing collective behaviors of a population is inappropriate or
even invalid in the case of repulsively coupled stochastic
oscillators. In numerical simulations, the parameter values
except for the cell density Q and the noise intensity D are the
same as previously, and the initial conditions are arbitrarily
chosen.

Furthermore, in order to characterize how pronounced the
peaks are in the phase difference probability distribution, we
introduce a useful index: Shannon entropy �sometimes re-
ferred to as a measure of uncertainty �59��. It is known that
the Shannon entropy plays a central role in information
theory. The entropy of a random variable is defined in terms
of its probability distribution, and can show a good measure
of randomness or uncertainty. We calculate the Shannon en-
tropy with the probability distribution of the phase differ-
ences among stochastic oscillators �60�

E = − 	
k=1

Nb

pk log2�pk� , �16�

where Nb �=100 in our numerical simulation� is the number
of bins used to determine the probability distribution, and pk
is the probability that the wrapped phase difference falls into
the bin. It is noted that the maximal entropy �Emax� corre-
sponding to a uniform distribution �equal to log2�100� or
6.6439 for Nb=100�.

Regarding the effect of repulsive coupling on collective
rhythms, it has been shown that the repulsive coupling can
induce clustering across a population of deterministic limit-
cycle oscillators. Here, for populations of stochastic oscilla-
tors we mainly analyze the characteristics of the phase dif-
ference distribution function p���� which describes the
phase relationship between arbitrary stochastic oscillators in
the sense of statistics, and present some interesting phenom-
ena.

In the case of attractive coupling, we have studied a popu-
lation of genetic stochastic oscillators induced by additive or
multiplicative noise. It has been shown that attractive cou-
pling can greatly enhance the noise-induced coherence. A
naturally arising question is whether or not the coherence can
be also enhanced by intracellular communication in the case
of repulsive coupling? Due to the same mechanism of noise-
induced oscillation and the similar qualitative natures for
phase difference distribution in the cases of multiplicative
and additive noises, below we investigate only the effect of
multiplicative noise and pay less attention to the detailed
difference between both noises. Throughout this section, we
set �1=10, �2=1, �3=50, �4=0.4, �1=0.5, �2=0.5, �3=25,
�4=0.2, �=200, �1=0, �=3.0, 
=10, n=4, �int=120. In ad-
dition, we point out that the following investigations of
phase difference distribution in two particular cases of the
cell number N=2 and 3 is only to better understand the
phase-repulsive relationship between stochastic oscillators.
In these two particular cases, the relation between the param-
eter Q and the cell density should be understood according to
the following explanations: if Q changes, then the cell vol-
ume must accordingly change so that N is invariant, accord-
ing to the previous definition of Q.

In order to characterize the effect of repulsive coupling on
the coherence of the individual oscillators, we calculate S as
a function of cell density Q and noise intensity D. Figures
12�a� and 12�b� show S vs Q and D for the system consisting
of Eqs. �4�–�6� and Eq. �9� with �1=0 and the population of
100 interacting oscillators, respectively. The SISR effect can
be used to explain that S has a maximum in the interval of
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FIG. 11. Scheme for a population of stochastic genetic oscilla-
tors coupled to a quorum-sensing apparatus via repulsive phase.
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the noise intensity D for a fixed cell density Q in both cases.
Note that Q does not have the significant effect on S for a
fixed D, referring to Figs. 12�a� and 12�b�. In addition, com-
pared with Fig. 12�a�, Fig. 12�b� shows that the repulsive
coupling has negligible effect on S. The results shown in
Figs. 12�a� and 12�b�, however, are significantly different
from those in the case of attractive coupling.

A. Unimodal distribution of phase differences
in the case of two oscillators

In the case of two stochastic oscillators, the main charac-
teristic of collective behaviors is that the distribution of
phase differences display stochastic antiphase in the sense of
statistics. In other words, the phase difference between the
two stochastic oscillators obeys the distribution concentrated
at � over �0,2��, or the firings between the two oscillators
appear in the inverse correlation �i.e., the correlation coeffi-
cient between two time series is negative�, which is similar
to antiphase synchronization of two coupled neurons with
channel noise �61�. Specifically, if one stochastic oscillator is
firing at a time, then the other stochastic oscillator has no
pulse at the time. To effectively show the effect of noise and
cell density on the phase distribution, we calculate the Shan-
non entropy as a function of noise intensity and cell density,
as plotted in Fig. 13�a�. It is clearly observed that there is a
region in the parameter space �D ,Q� where the Shannon en-
tropy is globally minimal. In other words, there exists an
optimal region in which the two stochastic oscillators have
optimal antiphase relationship. For example, for the fixed
Q=0.8, the Shannon entropy shown in Fig. 13�b� has a mini-
mum with respect to the noise intensity. In this case, three
examples of phase distribution for three different noise inten-
sities display the antiphase stochastic oscillation, as shown in
Figs. 13�c�–13�e�, respectively. Note that with the gradual
increase of D, the shape of the distribution function p����
would be distorted, but p���� is still antiphase �see Fig.
13�e��. We point out that the distorted peak would arise from
the combined effect of self-induced stochastic resonance and
repulsive coupling, where the mean period of stochastic os-
cillators is susceptible to noise through the SISR mechanism,
and the different relative firing events, i.e., the different
peaks of the distribution, are attributed to the effect of repul-
sive coupling. For Figs. 13�c�–13�e�, the corresponding tem-
poral firing patterns are plotted in Fig. 13�f�.

B. Bimodal distribution of phase differences
in the case of three oscillators

In this section, we consider three stochastic genetic oscil-
lators with phase-repulsive cellular communication. Refer-

ence �62� has shown that three repulsively coupled determin-
istic oscillators can demonstrate different attractors. Also,
Ref. �52� has displayed that several additional attractors can
arise when three repulsively coupled relaxators are detuned.
Accordingly, we can expect that three interacting stochastic
genetic oscillators have richer dynamical behaviors due to
the joint effect of phase-repulsive cellular communication
and noise. In this case, the main feature of noise-induced
coherent motions is that the phase difference distribution dis-
plays bimodality. For a weak noise intensity, e.g., D=10−3.5,
the phase difference distribution function p���� displays
two peaks as seen in Fig. 14�a�. With a small increase of the
noise intensity, e.g., D=10−3.0, two peaks become sharper,
implying that the phase relationship among the three stochas-
tic oscillators becomes more explicit, referring to Fig. 14�b�.
However, for the higher noise intensity, e.g., D=10−2.5, the
noise has a destructive effect on the phase relationship, i.e.,
the sharpness of the two peaks is blurred. More precisely, for
the fixed cell density Q=0.8 the bimodality shown in Fig.
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14�b� is optimal whereas the bimodality displayed in Figs.
14�a� and 14�c� is distorted due to the effect of noise. To
better illustrate the effect of noise on the phase distribution,
we calculate the Shannon entropy E again, and plot the de-
pendence between E and D for the fixed Q=0.8 in Fig. 14�d�.
Clearly, E has a minimum for a certain D. This further veri-
fies that an optimal noise intensity induces the most regular

phase relationship among the three repulsively coupled sto-
chastic oscillators, analogous to that in the case of noise-
induced coherent resonance.

In addition, we point out that there is a significant differ-
ence between two peaks observed both in the case of two
stochastic oscillators �see Fig. 13�e�� and in the case of three
stochastic oscillators �see Fig. 14�. The former is due to the
effect of strong noise whereas the latter results from the in-
trinsic nature of the phase difference distribution among the
stochastic oscillators.

C. Polymodal distribution of phase difference
in the case of multiple oscillators

In this section we numerically investigate the phase dif-
ference distribution in the case of multiple stochastic genetic
oscillators with repulsive coupling via the quorum-sensing
mechanism. In our numerical simulation, we simulate up to
100 stochastic oscillators, but the qualitative characteristics
of the phase difference distribution function p���� are basi-
cally similar, when the cell number is beyond a threshold
�the numerical simulation indicates that the threshold is 4�.
For clarity, here we only give the numerical results for the 10
stochastic oscillators with two kinds of noise intensities, as
shown in Figs. 15�a� and 15�b�, respectively.

For weak noise intensities, e.g., D=10−4.0, the distribution
function p���� is almost a flat curve with respect to the
phase difference ��, where there is no obvious peak �data
are not shown�. With the increase of noise intensity, e.g., D
=10−3.0, two peaks appear, referring to Fig. 15�a�. For a
larger noise intensity, three peaks appear, see Fig. 15�b�.
Note that two peaks in Fig. 15�a� imply that there exist two
most probabilities of phase difference, whereas three peaks
shown in Fig. 15�b� correspond to three most probabilities of
phase difference. We point out that the appearance of two
and three peaks in the phase difference distribution with ap-
propriate noise intensities is the common feature for repul-
sively coupled multiple cells. Besides, we calculate the Sh-
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FIG. 15. �Color online� �a�
The phase difference distribution
p���� as a function of �� for Q
=0.8, D=10−3.0; �b� p���� as a
function of �� for Q=0.8, D
=10−2.5; �c� The dependence of
the Shannon entropy E on noise
intensity D for several N with the
fixed Q=0.8; �d� raster plots in the
cases of �a, b� from bottom to top,
respectively. For �a�, �b�, and �d�,
the cell number is N=10.
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annon entropy again. Figure 15�c� shows the dependence of
the Shannon entropy on noise intensity for some numbers of
cells, i.e., N=2,3 ,4 ,5 ,10, where Q=0.8 is fixed. In the
cases of N=2 and 3, the Shannon entropy has an apparent
minimum but the minimum is not apparent for the larger cell
number unless the related curves are locally zoomed. Actu-
ally, the minimum of the Shannon entropy with respect to D
can approximate to the maximal Shannon entropy �Emax�
when the cell number is large enough, referring to Fig. 15�c�.
For the fixed cell number N�4, both two and three peaks
will appear in the phase difference distribution if we employ
some noise intensities near the value of noise intensity cor-
responding to the minimal entropy. The corresponding tem-
poral firing patterns of the component x of 10 stochastic
oscillators with noise intensity D=10−3.0 and 10−2.5 �from
bottom to top� are shown in Fig. 15�d�. The mechanism giv-
ing rise to the polymodal distribution may provide the statis-
tical reliable relationship between phase differences for a cell
population, but we can expect an intermittent transition be-
tween peaks of phase difference distribution of two oscilla-
tors, which in turn would provide a mechanism for cells to
resist the environmental stress. Further study is needed to
give a theoretical explanation of the observed phenomena in
the case of the phase-repulsive coupling via quorum-sensing
mechanism.

V. CONCLUSIONS AND DISCUSSIONS

We have shown that phase-attractive and phase-repulsive
cell-to-cell communication have different effects on coher-
ence and collective behaviors of an ensemble of stochastic
relaxation-type genetic oscillators. In the case of attractive
coupling, cellular communication can enhance both self-
induced stochastic resonance and achieve robust collective
rhythms. In particular, for fixed high cell densities, different
intensities of noise resulting from the fluctuation of intrinsic
chemical reactions or the extrinsic environment can induce

stochastic limit cycles with different amplitudes in the sense
statistics. In the case of repulsive coupling, the distribution
function of phase difference among stochastic oscillators can
display unimodality, bimodality or polymodality, depending
on the noise intensity and the cell number.

For the core stochastic genetic oscillator used in our de-
signing multicellular system, since noise is added to the
equation of the fast variable, the noise-induced oscillation
can be explained by the SISR mechanism recently found in
the excitable FitzHugh-Nagumo system �17–19�. Therefore,
it would be not surprising that some of the collective behav-
iors across populations of these stochastic oscillators via
phase-attractive cellular communication are similar to those
of interacting stochastic oscillators, referring to our recently
finished work �63�. However, some communication-induced
or noise-induced phenomena have been presented here.

In general, in the case of phase-repulsive coupling, the
deterministic dynamics nature of population behaviors sensi-
tively depends on the cell density. For example, Ref. �28�
shows that different cell densities can induce oscillation, in-
homogeneous limit cycles, clustering and single fixed point,
respectively. In our cases, however, the distribution function
of phase difference among stochastic oscillators with the dif-
ferent cell number can display different modalities, but there
is a threshold of the cell number such that modality of the
phase difference distribution basically keeps invariant as the
cell number is beyond the threshold.

Finally, we point out that it would be worth investigating
the joint effects of both internal and external noises and cou-
pling on coherence and collective rhythms across popula-
tions of stochastic genetic oscillators.
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